SOME UNIQUENESS THEOREMS FOR HOLOMORPHIC CURVES ON ANNULUS SHARING HYPERSURFACES IN GENERAL POSITION

Ha Tran Phuong*, Inthavichit Padaphet ${ }^{\dagger}$ and Le Quang Ninh ${ }^{\ddagger}$
* Department of Mathematics,
Thai Nguyen University of Education
Luong Ngoc Quyen streets, Thai Nguyen City, VietNam.
e-mail: phuonght@tnue.edu.vn, hatranphuong@yahoo.com
${ }^{\dagger}$ Department of Natural Science,
Luang Prabang teacher training college, Laos.
e-mail: padaphet-lttc@hotmail.com
\ddagger Department of Mathematics, Thai Nguyen University of Education, Luong Ngoc Quyen streets, Thai Nguyen City, VietNam. e-mail: ninhlq@tnue.edu.vn

Abstract

Recently H. T. Phuong and L. Vilaisavanh proved a second main theorem for algebraically non-degenerate holomorphic curves on annulus intersecting hypersurfaces. Based on this theorem, here we prove some uniqueness theorems for holomorphic curves on annulus in the case of hypersurfaces in general position in complex projective.

1 Introduction and results

The uniqueness problem for holomorphic curves on domain in complex plane \mathbb{C} has been studied intensively many mathematicians. The first is the work of H . Fujimoto ([4]) in 1975, which generalized Nevanlinna's five point theorem to the case of meromorphic mappings of \mathbb{C}^{m} into $\mathbb{P}^{n}(\mathbb{C})$. Next is the works of Fujimoto

Key words: uniqueness theorem, holomorphic curves, annulus. 2010 AMS Mathematics Classification: Primary 32H30.
([5]), Ru ([13]), Dethloff-Tan ([2],[3]), Yan-Chen ([1],[14]), Phuong ([8],[9],[10]), and others. For holomorphic curves on an annulus, in 2013, H. T. Phuong and T. H. Minh ([7]) proved a uniqueness theorem in the case of hyperplanes. And in 2019, H. T. Phuong and L. Vilaisavanh ([11]) introduced some uniqueness theorem in the case of hypersurfaces in general position for Veronese embedding in $\mathbb{P}^{n}(\mathbb{C})$. Our idea here is to give some uniqueness results for algebraically nondegenerate holomorphic maps on an annulus sharing hypersurfaces in general position in $\mathbb{P}^{n}(\mathbb{C})$ by using the second main theorem with ramification of H. T. Phuong and L. Vilaisavanh ([12]). First of all, we introduce some notations.

Let $R>1$ be a fixed positive real number or $+\infty$, set

$$
\Delta=\left\{z \in \mathbb{C}: \frac{1}{R}<|z|<R\right\},
$$

be an annulus in \mathbb{C}.
Now let $f=\left(f_{0}: \cdots: f_{n}\right): \Delta \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a holomorphic curve on Δ, where f_{0}, \ldots, f_{n} be holomorphic functions on Δ without common zeros. The mapping $\left(f_{0}, \ldots, f_{n}\right): \Delta \rightarrow \mathbb{C}^{n+1}$ is said to be reduced representative of f. For $1<r<R$, characteristic function $T_{f}(r)$ of f is defined by

$$
T_{f}(r)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r e^{i \theta}\right)\right\| d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left\|f\left(r^{-1} e^{i \theta}\right)\right\| d \theta
$$

where $\|f(z)\|=\max \left\{\left|f_{0}(z)\right|, \ldots,\left|f_{n}(z)\right|\right\}$. The above definition is independent, up to an additive constant, of the choice of the reduced representation of f. We set

$$
O_{f}(r)= \begin{cases}O\left(\log r+\log T_{f}(r)\right) & \text { if } R=+\infty \\ O\left(\log \frac{1}{R-r}+\log T_{f}(r)\right) & \text { if } R<+\infty\end{cases}
$$

Let D be a hypersurface in $\mathbb{P}^{n}(\mathbb{C})$ of degree d and Q be the homogeneous polynomial of degree d in $n+1$ variables with coefficients in \mathbb{C} defining D, we define

$$
\begin{aligned}
& \bar{E}_{f}(D):=\{z \in \Delta \mid Q \circ f(z)=0 \text { ignoring multiplicity }\} ; \\
& E_{f}(D):=\left\{(z, m) \in \Delta \times \mathbb{N} \mid Q \circ f(z)=0 \text { and } \operatorname{ord}_{Q \circ f}(z)=m\right\},
\end{aligned}
$$

where $\operatorname{ord}_{g}(z)$ is the order of zero on z of a holomorphic functions g. Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be a collection of hypersurfaces, we define

$$
\bar{E}_{f}(\mathcal{D}):=\bigcup_{D \in \mathcal{D}} \bar{E}_{f}(D) \quad \text { and } \quad E_{f}(\mathcal{D}):=\bigcup_{D \in \mathcal{D}} E_{f}(D) .
$$

We recall that a collection of $q>n$ hypersurfaces $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ in $\mathbb{P}^{n}(\mathbb{C})$ is said to be in general position if for any distinct $i_{1}, \ldots, i_{n+1} \in$
$\{1, \ldots, q\}$,

$$
\bigcap_{k=1}^{n+1} D_{i_{k}}=\emptyset
$$

In 2019, H. T. Phuong and L. Vilaisavanh ([11]) given some uniqueness theorem for holomorphic curves on annulus sharing hypersurfaces in general position for Veronese embedding in $\mathbb{P}^{n}(\mathbb{C})$ as following

Theorem A. Let f and g be algebraically non-degenerate holomorphic curves from Δ into $\mathbb{P}^{n}(\mathbb{C})$ such that $O_{f}(r)=o\left(T_{f}(r)\right)$ and $O_{g}(r)=o\left(T_{g}(r)\right)$. Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be a collection of $q>n_{\mathcal{D}}+1+2 n_{\mathcal{D}}^{2} / m_{\mathcal{D}}$ hypersurfaces in general position for Veronese embedding in $\mathbb{P}^{n}(\mathbb{C})$ such that $f(z)=g(z)$ for all $z \in \bar{E}_{f}(\mathcal{D}) \cup \bar{E}_{g}(\mathcal{D})$. Then $f \equiv g$.

Theorem B. Let f and g be algebraically non-degenerate holomorphic curves from Δ into $\mathbb{P}^{n}(\mathbb{C})$ such that $O_{f}(r)=o\left(T_{f}(r)\right)$ and $O_{g}(r)=o\left(T_{g}(r)\right)$. Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be a collection of $q>n_{\mathcal{D}}+1+2 n_{\mathcal{D}} / m_{\mathcal{D}}$ hypersurfaces in general position for Veronese embedding in $\mathbb{P}^{n}(\mathbb{C})$ such that
(a) $f(z)=g(z)$ for all $z \in \bar{E}_{f}(\mathcal{D}) \cup \bar{E}_{g}(\mathcal{D})$,
(b) $\bar{E}_{f}\left(D_{i}\right) \cap \bar{E}_{f}\left(D_{j}\right)=\emptyset$ and $\bar{E}_{g}\left(D_{i}\right) \cap \bar{E}_{g}\left(D_{j}\right)=\emptyset$ for all $i \neq j \in$ $\{1, \ldots, q\}$.
Then $f \equiv g$.
Our contribution in this paper is to give some uniqueness results for algebraically non-degenerate holomorphic maps on an annulus sharing hypersurfaces in general position in $\mathbb{P}^{n}(\mathbb{C})$.

Now let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be a collection of q hypersurfaces in general position. We denote the degree of D_{j} by d_{j} for $j=1, \ldots, q$ and let d be the least common multiple of the d_{j}. Set

$$
\delta_{\mathcal{D}}:=\min \left\{d_{1}, \ldots, d_{q}\right\}
$$

and

$$
M=\left(d(n+1)^{2} 2^{n+1}+1\right)^{n}
$$

Out results are stated as follows:
Theorem 1. Let f and g be algebraically non-degenerate holomorphic curves from Δ into $\mathbb{P}^{n}(\mathbb{C})$ such that $O_{f}(r)=o\left(T_{f}(r)\right)$ and $O_{g}(r)=o\left(T_{g}(r)\right)$. Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be a collection of $q>n+1+2 M n / \delta_{\mathcal{D}}$ hypersurfaces in general position in $\mathbb{P}^{n}(\mathbb{C})$ such that $f(z)=g(z)$ for all $z \in \bar{E}_{f}(\mathcal{D}) \cup \bar{E}_{g}(\mathcal{D})$. Then $f \equiv g$.

Theorem 2. Let f and g be algebraically non-degenerate holomorphic curves from Δ into $\mathbb{P}^{n}(\mathbb{C})$ such that $O_{f}(r)=o\left(T_{f}(r)\right)$ and $O_{g}(r)=o\left(T_{g}(r)\right)$. Let $\mathcal{D}=\left\{D_{1}, \ldots, D_{q}\right\}$ be a collection of $q>n+1+2 M / \delta_{\mathcal{D}}$ hypersurfaces in general position in $\mathbb{P}^{n}(\mathbb{C})$ such that
(a) $f(z)=g(z)$ for all $z \in \bar{E}_{f}(\mathcal{D}) \cup \bar{E}_{g}(\mathcal{D})$,
(b) $\bar{E}_{f}\left(D_{i}\right) \cap \bar{E}_{f}\left(D_{j}\right)=\emptyset$ and $\bar{E}_{g}\left(D_{i}\right) \cap \bar{E}_{g}\left(D_{j}\right)=\emptyset$ for all $i \neq j \in$ $\{1, \ldots, q\}$.
Then $f \equiv g$.
We know that, holomorphic function $h: \Delta \rightarrow \mathbb{C}$ is transcendental function if $\limsup _{r \rightarrow+\infty} \frac{T_{0}(r, h)}{\log r}=\infty$ in the case $R=\infty$ and $\limsup _{r \rightarrow R} \frac{T_{0}(r, h)}{-\log (R-r)}=\infty$ in the case $R<+\infty$. So holomorphic curve on an annulus $f=\left(f_{0}: f_{1}: \cdots: f_{n}\right)$ satisfy $O_{f}(r)=o\left(T_{f}(r)\right)$ if one of $f_{j}, 0 \leqslant j \leqslant n$, is transcendental function.

Theorem 1 and Theorem 2 are uniqueness theorems for non-constant holomorphic curves on annulus Δ in the case of hypersurfaces. They give some sufficient conditions for two algebraically non-degenerate holomorphic curves on Δ are equivalent and the collections of hypersurfaces in these theorems are in general position.

2 Preliminaries and Some Lemmas

In this section, we introduce some notations and recall some results in Nevanlinna theory for meromorphic functions and holomorphic curves on annulus, which are necessary for proofs of our results. For any real number r such that $1<r<R$, we denote

$$
\Delta_{1, r}=\left\{z \in \mathbb{C}: \frac{1}{r}<|z| \leqslant 1\right\}, \quad \Delta_{2, r}=\{z \in \mathbb{C}: 1<|z|<r\}
$$

and set

$$
\Delta_{r}=\Delta_{1, r} \cup \Delta_{2, r}
$$

Let f be a meromorphic function on Δ, we denote $n_{1}(r, \infty)$ the number of poles in $\Delta_{1, r}$ and $n_{2}(r, \infty)$ the number of poles of f in $\Delta_{2, r}$.

For $c \in \mathbb{C}$, we denote $n_{1}\left(r, \frac{1}{f-c}\right)$ the number of zeros of $f-c$ in $\Delta_{1, r}$, $n_{2}\left(r, \frac{1}{f-c}\right)$ the number of zeros of $f-c$ in $\Delta_{2, r}$. We put

$$
\begin{aligned}
& N_{1}\left(r, \frac{1}{f-c}\right)=\int_{1 / r}^{1} \frac{n_{1}\left(t, \frac{1}{f-c}\right)}{t} d t \\
& N_{2}\left(r, \frac{1}{f-c}\right)=\int_{1}^{r} \frac{n_{2}\left(t, \frac{1}{f-c}\right)}{t} d t
\end{aligned}
$$

and

$$
\begin{aligned}
& N_{1}(r, f)=N_{1}(r, \infty)=\int_{1 / r}^{1} \frac{n_{1}(t, \infty)}{t} d t \\
& N_{2}(r, f)=N_{2}(r, \infty)=\int_{1}^{r} \frac{n_{2}(t, \infty)}{t} d t
\end{aligned}
$$

Let

$$
\begin{aligned}
& N_{0}\left(r, \frac{1}{f-c}\right)=N_{1}\left(r, \frac{1}{f-c}\right)+N_{2}\left(r, \frac{1}{f-c}\right), \\
& N_{0}(r, f)=N_{1}(r, f)+N_{2}(r, f) .
\end{aligned}
$$

It is easy to see that the functions $N_{0}\left(r, \frac{1}{f-c}\right)$ and $N_{0}(r, f)$ are nonnegative.
Lemma 2.1 ([6]) Let f be a non-constant meromorphic function on Δ. Then for any $r \in(1, R)$, we have

$$
\begin{gathered}
N_{0}\left(r, \frac{1}{f}\right)-N_{0}(r, f)=\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r e^{i \theta}\right)\right| d \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|f\left(r^{-1} e^{i \theta}\right)\right| d \theta \\
-\frac{1}{\pi} \int_{0}^{2 \pi} \log \left|f\left(e^{i \theta}\right)\right| d \theta
\end{gathered}
$$

Let $f=\left(f_{0}: \cdots: f_{n}\right): \Delta \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a holomorphic curve on Δ, where f_{0}, \ldots, f_{n} be holomorphic functions on Δ without common zeros. Let D be a hypersurface in $\mathbb{P}^{n}(\mathbb{C})$ of degree d and let Q is the homogeneous polynomial of degree d defining D. Let $n_{1, f}(r, D)$ be the number of zeros of $Q \circ f$ in $\Delta_{1, r}$, $n_{2, f}(r, D)$ be the number of zeros of $Q \circ f$ in $\Delta_{2, r}$, counting multiplicity. The integrated counting and truncated functions are defined by

$$
N_{1, f}(r, D)=\int_{r^{-1}}^{1} \frac{n_{1, f}(t, D)}{t} d t, \quad N_{2, f}(r, D)=\int_{1}^{r} \frac{n_{2, f}(t, D)}{t} d t,
$$

and we set

$$
N_{f}(r, D)=N_{1, f}(r, D)+N_{2, f}(r, D) .
$$

Let α be a positive integer, we denote $n_{1, f}^{\alpha}(r, D)$ the number of zeros with multiplicity truncated by M of $Q \circ f$ in $\Delta_{1, r}, n_{2, f}^{\alpha}(r, D)$ be the number of zeros of $Q \circ f$ in $\Delta_{2, r}$ where any zero is counted with multiplicity if its multiplicity is less than or equal to α, and α times otherwise, namely

$$
\begin{aligned}
& n_{1, f}^{\alpha}(r, D)=\sum_{z \in \Delta_{1, r}, Q \circ f(z)=0} \min \left\{\operatorname{ord}_{Q \circ f}(z), \alpha\right\}, \\
& n_{2, f}^{\alpha}(r, D)=\sum_{z \in \Delta_{2, r}, Q \circ f(z)=0} \min \left\{\operatorname{ord}_{Q \circ f}(z), \alpha\right\} .
\end{aligned}
$$

The integrated counting and truncated functions are defined by

$$
N_{1, f}^{\alpha}(r, D)=\int_{r^{-1}}^{1} \frac{n_{1, f}^{\alpha}(t, D)}{t} d t, \quad N_{2, f}^{\alpha}(r, D)=\int_{1}^{r} \frac{n_{2, f}^{\alpha}(t, D)}{t} d t,
$$

and we set

$$
N_{f}^{\alpha}(r, D)=N_{1, f}^{\alpha}(r, D)+N_{2, f}^{\alpha}(r, D)
$$

For a positive integer k, we denote

$$
\begin{aligned}
& n_{1, f}^{\alpha}(r, D,>k)=\sum_{z \in \Delta_{1, r}, \operatorname{ord}_{Q \circ f}(z)>k} \min \left\{\operatorname{ord}_{Q \circ f}(z), \alpha\right\}, \\
& n_{2, f}^{\alpha}(r, D>k)=\sum_{z \in \Delta_{2, r}, \operatorname{ord}_{Q \circ f}(z)>k} \min \left\{\operatorname{ord}_{Q \circ f}(z), \alpha\right\} .
\end{aligned}
$$

The integrated counting and truncated functions are defined by

$$
\begin{aligned}
& N_{1, f}^{\alpha}(r, D,>k)=\int_{r^{-1}}^{1} \frac{n_{1, f}^{\alpha}(t, D,>k)}{t} d t \\
& N_{2, f}^{\alpha}(r, D,>k)=\int_{1}^{r} \frac{n_{2, f}^{\alpha}(t, D,>k)}{t} d t
\end{aligned}
$$

Put

$$
N_{f}^{\alpha}(r, D,>k)=N_{1, f}^{\alpha}(r, D)+N_{2, f}^{\alpha}(r, D,>k)
$$

Similarly, we denote

$$
\begin{aligned}
& n_{1, f}^{\alpha}(r, D, \leqslant k)=\sum_{z \in \Delta_{1, r}, 0<\operatorname{ord}_{Q \circ f}(z) \leqslant k} \min \left\{\operatorname{ord}_{Q \circ f}(z), \alpha\right\}, \\
& n_{2, f}^{\alpha}(r, D \leqslant k)=\sum_{z \in \Delta_{2, r}, 0<\operatorname{ord}_{Q \circ f}(z) \leqslant k} \min \left\{\operatorname{ord}_{Q \circ f}(z), \alpha\right\} \\
& N_{1, f}^{\alpha}(r, D, \leqslant k)=\int_{r^{-1}}^{1} \frac{n_{1, f}^{\alpha}(t, D, \leqslant k)}{t} d t \\
& N_{2, f}^{\alpha}(r, D, \leqslant k)=\int_{1}^{r} \frac{n_{2, f}^{\alpha}(t, D, \leqslant k)}{t} d t
\end{aligned}
$$

and we put

$$
N_{f}^{\alpha}(r, D, \leqslant k)=N_{1, f}^{\alpha}(r, D, \leqslant k)+N_{2, f}^{\alpha}(r, D, \leqslant k)
$$

So it is to see that

$$
N_{f}^{\alpha}(r, D)=N_{f}^{\alpha}(r, D, \leqslant k)+N_{f}^{\alpha}(r, D,>k)
$$

holds for any integer α and k.
In 2021, H.T. Phuong and L. Vilaisavanh ([12]) proved the following

Lemma 2.2. Let D be a hypersurface in $\mathbb{P}^{n}(\mathbb{C})$ of degree d and $f=\left(f_{0}\right.$: $\left.\cdots: f_{n}\right): \Delta \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be a holomorphic curve whose image is not contained D. Then we have for any $1<r<R$,

$$
m_{f}(r, D)+N_{f}(r, D)=d T_{f}(r)+O(1)
$$

Lemma 2.3. Let $f: \Delta \rightarrow \mathbb{P}^{n}(\mathbb{C})$ be an algebraically non-degenerate holomorphic curve, and let $D_{j}, 1 \leqslant j \leqslant q$, be hypersurfaces in $\mathbb{P}^{n}(\mathbb{C})$ of degree d_{j} in general position. Let d be the least common multiple of the $d_{1}, d_{2}, \ldots, d_{q}$. Let $0<\varepsilon<1$ and

$$
\left.\alpha \geqslant\left(d\left[(n+1)^{2} 2^{n}\right) \varepsilon^{-1}\right]+1\right)^{n}
$$

Then for any $1<r<R$, we have

$$
\| \quad(q-(n+1)-\varepsilon) T_{f}(r) \leqslant \sum_{j=1}^{q} d_{j}^{-1} N_{f}^{\alpha}\left(r, D_{j}\right)+O_{f}(r)
$$

3 Proofs of Theorem 1 and Theorem 2

Proof of Theorem 1. Assume that $f \not \equiv g$, then there are two numbers $l, t \in$ $\{0, \ldots, n\}, l \neq t$ such that $f_{l} g_{t} \not \equiv f_{t} g_{l}$. Let d_{j} be the degree of $D_{j}, j=1, \ldots, q$, and let d be the least common multiple of the d_{j}. Let k be a sufficiently large positive integer, which will be chosen later. With the hypothesis in Theorem 1, we have

$$
\begin{aligned}
N_{f}^{M}\left(r, D_{j}\right) & =N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+N_{f}^{M}\left(r, D_{j},>k\right) \\
& =\frac{k}{k+1} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+\frac{1}{k+1} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+N_{f}^{M}\left(r, D_{j},>k\right) \\
& \leqslant \frac{k}{k+1} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+\frac{M}{k+1} N_{f}^{1}\left(r, D_{j}, \leqslant k\right)+M N_{f}^{1}\left(r, D_{j},>k\right) \\
& \leqslant \frac{k}{k+1} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+\frac{M}{k+1} N_{f}^{1}\left(r, D_{j}, \leqslant k\right)+\frac{M}{k+1} N_{f}\left(r, D_{j},>k\right) \\
& \leqslant \frac{k}{k+1} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+\frac{M}{k+1} N_{f}\left(r, D_{j}, \leqslant k\right)+\frac{M}{k+1} N_{f}\left(r, D_{j},>k\right) \\
& =\frac{k}{k+1} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+\frac{M}{k+1} N_{f}\left(r, D_{j}\right) \\
& \leqslant \frac{k}{k+1} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+\frac{M d_{j}}{k+1} T_{f}(r)+O(1)
\end{aligned}
$$

so

$$
\frac{1}{d_{j}} N_{f}^{M}\left(r, D_{j}\right) \leqslant \frac{k}{d_{j}(k+1)} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+\frac{M}{k+1} T_{f}(r)+O(1)
$$

This implies that

$$
\begin{equation*}
\sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}^{M}\left(r, D_{j}\right) \leqslant \frac{k}{k+1} \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+\frac{q M}{k+1} T_{f}(r)+O(1) \tag{3.1}
\end{equation*}
$$

On the other hand, by Lemma 2.3 with $\varepsilon=1 / 2$, we have

$$
\begin{equation*}
\left(q-n-\frac{3}{2}\right) T_{f}(r) \leqslant \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}^{M}\left(r, D_{j}\right)+O_{f}(r) \tag{3.2}
\end{equation*}
$$

Combining the formulas (3.1) and (3.2) together, we have

$$
\left(q-\frac{q M}{k+1}-n-\frac{3}{2}\right) T_{f}(r) \leqslant \frac{k}{k+1} \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+O_{f}(r)
$$

This implies that

$$
\begin{align*}
(q(k+1-M) & \left.-\left(n+\frac{3}{2}\right)(k+1)\right) T_{f}(r) \tag{3.3}\\
& \leqslant k \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}^{M}\left(r, D_{j}, \leqslant k\right)+O_{f}(r) \\
& \leqslant M k \sum_{j=1}^{q} \frac{1}{d_{j}} N_{f}^{1}\left(r, D_{j}, \leqslant k\right)+O_{f}(r) \\
& \leqslant \frac{M k}{\delta} \sum_{j=1}^{q} N_{f}^{1}\left(r, D_{j}, \leqslant k\right)+O_{f}(r)
\end{align*}
$$

Assume that $z_{0} \in \Delta$ is a zero of $D_{j} \circ f$ with multiplicity not greater than k, then $z_{0} \in \bar{E}_{f}(\mathcal{D}) \cup \bar{E}_{g}(\mathcal{D})$. This implies that $g\left(z_{0}\right)=f\left(z_{0}\right)$, so

$$
f_{l}\left(z_{0}\right) g_{t}\left(z_{0}\right)=f_{t}\left(z_{0}\right) g_{l}\left(z_{0}\right)
$$

namely z_{0} is the zero of the holomorphic function $h=f_{l} g_{t}-f_{t} g_{l}$. Note that by the hypothesis that the hypersurfaces in \mathcal{D} are in general position with Δ, then there exist at most n hypersurfaces D_{j} in \mathcal{D} such that $D_{j} \circ f\left(z_{0}\right)=0$. This implies that

$$
\sum_{j=1}^{q} N_{f}^{1}\left(r, D_{j}, \leqslant k\right) \leqslant n N_{0}\left(r, \frac{1}{h}\right)
$$

Since h is holomorphic function, from Lemma 2.1 we have

$$
\begin{aligned}
N_{0}\left(r, \frac{1}{h}\right)= & \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\left(f_{l} g_{t}-f_{t} g_{l}\right)\left(r^{-1} e^{i \theta}\right)\right| d \theta \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left|\left(f_{l} g_{t}-f_{t} g_{l}\right)\left(r e^{i \theta}\right)\right| d \theta+O(1) \\
\leqslant & \frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left(2 . \max _{j=0, \ldots, n}\left|f_{j}\left(r^{-1} e^{i \theta}\right)\right| \max _{j=0, \ldots, n}\left|g_{j}\left(r^{-1} e^{i \theta}\right)\right|\right) d \theta \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi} \log \left(2 \max _{j=0, \ldots, n}\left|f_{j}\left(r e^{i \theta}\right)\right| \max _{j=0, \ldots, n}\left|g_{j}\left(r e^{i \theta}\right)\right|\right) d \theta+O(1) \\
= & \frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \max _{j=0, \ldots, n}\left|f_{j}\left(r^{-1} e^{i \theta}\right)\right| d \theta+\log \max _{j=0, \ldots, n}\left|g_{j}\left(r^{-1} e^{i \theta}\right)\right|\right) d \theta \\
& +\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(\log \max _{j=0, \ldots, n}\left|f_{j}\left(r e^{i \theta}\right)\right| d \theta+\log \max _{j=0, \ldots, n}\left|g_{j}\left(r e^{i \theta}\right)\right|\right) d \theta+O(1) \\
= & T_{f}(r)+T_{g}(r)+O(1)
\end{aligned}
$$

Therefore, (3.3) becomes

$$
\begin{align*}
(q(k+1-M)- & \left.\left(n+\frac{3}{2}\right)(k+1)\right) T_{f}(r) \tag{3.4}\\
& \leqslant \frac{n M k}{\delta}\left(T_{f}(r)+T_{g}(r)\right)+O_{f}(r)
\end{align*}
$$

Similarly for the holomorphic map g we have

$$
\begin{align*}
(q(k+1-M)- & \left.\left(n+\frac{3}{2}\right)(k+1)\right) T_{g}(r) \tag{3.5}\\
& \leqslant \frac{n M k}{\delta}\left(T_{f}(r)+T_{g}(r)\right)+O_{f}(r)
\end{align*}
$$

Adding the inequalities (3.4) and (3.5) together, we have

$$
\begin{aligned}
(q(k+1-M)- & \left.\left(n+\frac{3}{2}\right)(k+1)\right)\left(T_{f}(r)+T_{g}(r)\right) \\
& \leqslant \frac{2 n M k}{\delta}\left(T_{f}(r)+T_{g}(r)\right)+O_{f}(r)+O_{g}(r)
\end{aligned}
$$

This concludes that

$$
q(k+1-M)-\left(n+\frac{3}{2}\right)(k+1)-\frac{2 M n k}{\delta} \leqslant \frac{O_{f}(r)+O_{g}(r)}{T_{f}(r)+T_{g}(r)}
$$

holds for a sufficiently large positive real number r. Let $r \rightarrow \infty$ we have

$$
q(k+1-M)-\left(n+\frac{3}{2}\right)(k+1)-\frac{2 M n k}{\delta} \leqslant 0
$$

This is equivalent to

$$
\begin{equation*}
k\left(q \delta-\left(n+\frac{3}{2}\right) \delta-2 M n\right)+\left(q-q M-\left(n+\frac{3}{2}\right)\right) \delta \leqslant 0 . \tag{3.6}
\end{equation*}
$$

If we take

$$
k>\frac{\left(q M-q+n+\frac{3}{2}\right) \delta}{q \delta-\left(n+\frac{3}{2}\right) \delta-2 n M}
$$

then since the hypothesis that $q \geqslant n+2+\frac{2 n M}{\delta}$ we have a contradiction. Hence $f_{i} g_{j} \equiv f_{j} g_{i}$ for any $i \neq j \in\{0, \ldots, n\}$, namely $f \equiv g$. This is the conclusion of the proof of Theorem 1 .

Proof of Theorem 2. We assume that $f \not \equiv g$ too. Then there are two numbers $l, t \in\{0, \ldots, n\}, l \neq t$ such that $f_{l} g_{t}-f_{t} g_{l} \not \equiv 0$. Let k be a sufficiently large positive integer, which will be chosen later. With the hypothesis in Theorem 2 and the proof of Theorem 1, we have

$$
\begin{align*}
(q(k+1-M) & \left.-\left(n+\frac{3}{2}\right)(k+1)\right) T_{f}(r) \tag{3.7}\\
& \leqslant \frac{M k}{\delta} \sum_{j=1}^{q} N_{f}^{1}\left(r, D_{j}, \leqslant k\right)+O_{f}(r)
\end{align*}
$$

We know that, if $z_{0} \in \Delta$ is a zero of $D_{j} \circ f$ with multiplicity less than or equal to k, then z_{0} will be a zero of the function $f_{l} g_{t}-f_{t} g_{l}$. By the hypothesis we have

$$
\bar{E}_{f}\left(D_{i}\right) \cap \bar{E}_{f}\left(D_{j}\right)=\emptyset
$$

for any pair $i \neq j \in\{1, \ldots, q\}$. So if z_{0} is a zero of $D_{j} \circ f$ then z_{0} will not be a zero of $D_{i} \circ f$ for all $i \neq j \in\{1, \ldots, q\}$. Hence

$$
\sum_{j=1}^{q} N_{f}^{1}\left(r, D_{j}, \leqslant k\right) \leqslant N_{0}\left(r, \frac{1}{f_{l} g_{t}-f_{t} g_{l}}\right) \leqslant T_{f}(r)+T_{g}(r)+O_{f}(r) .
$$

Therefore, (3.7) becomes

$$
\begin{align*}
(q(k+1-M)- & \left.\left(n+\frac{3}{2}\right)(k+1)\right) T_{f}(r) \tag{3.8}\\
& \leqslant \frac{M k}{\delta}\left(T_{f}(r)+T_{g}(r)\right)+O_{f}(r)
\end{align*}
$$

Similarly for the holomorphic map g we have

$$
\begin{align*}
(q(k+1-M)- & \left.\left(n+\frac{3}{2}\right)(k+1)\right) T_{g}(r) \tag{3.9}\\
& \leqslant \frac{M k}{\delta}\left(T_{f}(r)+T_{g}(r)\right)+O_{f}(r)
\end{align*}
$$

Adding the inequalities (3.8) and (3.9) together, we have

$$
\begin{aligned}
(q(k+1-M)- & \left.\left(n+\frac{3}{2}\right)(k+1)\right)\left(T_{f}(r)+T_{g}(r)\right) \\
& \leqslant \frac{2 M k}{\delta}\left(T_{f}(r)+T_{g}(r)\right)+O_{f}(r)+O_{g}(r)
\end{aligned}
$$

This concludes that

$$
q(k+1-M)-\left(n+\frac{3}{2}\right)(k+1)-\frac{2 M k}{\delta} \leqslant \frac{O_{f}(r)+O_{g}(r)}{T_{f}(r)+T_{g}(r)}
$$

holds for a sufficiently large positive real number r. Let $r \rightarrow \infty$ we have

$$
q(k+1-M)-\left(n+\frac{3}{2}\right)(k+1)-\frac{2 M k}{\delta} \leqslant 0
$$

This is equivalent to

$$
\begin{equation*}
k\left(q \delta-\left(n+\frac{3}{2}\right) \delta-2 M\right)+\left(q-q M-\left(n+\frac{3}{2}\right)\right) \delta \leqslant 0 \tag{3.10}
\end{equation*}
$$

If we take

$$
k>\frac{\left(q M-q+n+\frac{3}{2}\right) \delta}{q \delta-\left(n+\frac{3}{2}\right) \delta-2 M},
$$

then since the hypothesis that $q \geqslant n+2+\frac{2 M}{\delta}$ we have a contradiction. Hence $f_{i} g_{j} \equiv f_{j} g_{i}$ for any $i \neq j \in\{0, \ldots, n\}$, namely $f \equiv g$. This is the conclusion of the proof of Theorem 2.

References

[1] Z. H. Chen and Q. M. Yan, A note on uniqueness problem for meromorphic mappings with $2 N+3$ hyperplanes, Sci. China Math. Vol.53, No. 10, 2657-2663, 2010.
[2] G. Dethloff and T. V. Tan, Uniqueness theorem s for meromorphic mappings with few hyperplanes, Bul. Sci. Math. 133, 501-514, 2009.
[3] G. Dethloff and T. V. Tan, A uniqueness theorem for meromorphic maps with moving hypersurfaces, Publ. Math. Debrecen, 78, 347-357, 2011.
[4] H. Fujimoto, The Uniqueness problem of meromorphic maps into complex projective space, I, Nagoya Math. J. 58 1-23, 1975.
[5] H. Fujimoto, Uniqueness problem with truncated multiplicities in value distribution theory, I, Nagoya Math. J. 152 131-152, 1998.
[6] A. Y. Khrystiyanyn and A. A. Kondratyuk, On the Nevanlinna theory for meromorphic functions on Annulus I, Matematychni Studii, Vol. 23, No. 1, 19-30, 2004.
[7] H. T. Phuong and T. H. Minh, A uniqueness theorem for holomorphic curves on annulus sharing $2 n+3$ hyperplanes, Vietnam J. Math. Vol 41, 167-179, 2013.
[8] H. T. Phuong, On unique range sets for holomorphic maps sharing hypersurfaces without counting multiplicity, Acta Math. Vietnamica, Volume 34, N 3, 351-360, 2009.
[9] H. T. Phuong, On Uniqueness theorems for holomorphic curves sharing hypersurfaces without counting multiplicity, Ukrainian Math. Journal, Volume 63, No 4, 556-565, 2011.
[10] H. T. Phuong, Uniqueness theorems for holomorphic curves sharing moving hypersurfaces, Complex variables and Elliptic Equations, Vol. 58, No. 11, pp 1481-1491, 2013.
[11] H. T. Phuong and L. Vilaisavanh, Some uniqueness theorems for holomorphic curves on annulus sharing hypersurfaces,Complex variables and Elliptic Equations, Vol. 66, No. 1, pp 22-34, 2021.
[12] H. T. Phuong and L. Vilaisavanh, On fundamental theorems for holomorphic curves on an annulus intersecting hypersurfaces, to appear in Bulletin of the Iranian Mathematical Society.
[13] M. Ru, A uniqueness theorem with moving targets without counting multiplicity, Proc.Am. Math. Soc. 129, 2701-2707, 2001.
[14] Q. M. Yan and Z. H. Chen, A note on the uniqueness theorem of meromorphic mappings, Sci. China Ser A 49, 360-365, 2006.

