East-West J. of Mathematics: Vol. 23, No 2 (2022) pp. 112118
https://doi.org/10.36853/ewjm0389

A NOTE ON CENTRAL IDEMPOTENTS IN GROUP RING OF SYMMETRIC GROUP OVER \mathbb{Z}_{n}

Anuradha Sabharwal, Pooja Yadav and R. K. Sharma
Department of Mathematics,
University of Delhi, Delhi-110 007 India
e-mail: anuradha.sabharwal@gmail.com
Department of Mathematics,
Kamala Nehru College, University of Delhi, Delhi-110 007 India
e-mail: iitd.pooja@gmail.com
Department of Mathematics,
Indian Institute of Technology Delhi, Delhi-110 016 India
e-mail: rksharmaiitd@gmail.com

Abstract

The number of central idempotents in group ring $\mathbb{Z}_{n}\left[S_{3}\right]$ have been determined. Furthermore, some explicit form of central idempotents have also been obtained.

1 Introduction

The problem of computing central idempotents of rings and group rings is an important problem. It has drawn attention of many researchers. A central idempotent that cannot be written as the sum of two non zero orthogonal central idempotents is called a centrally primitive idempotent. Meyer [5] computed primitive central idempotents of $F_{q}[G]$ for arbitrary prime powers q, and arbitrary finite groups G. Aso, a well-known result of Osima [6, p.178] gives the explicit form for the primitive central idempotents in $K[G]$, when K is a field. Martínez 2] computed central irreducible idempotents of the dihedral group algebra $\mathbb{F}_{q}\left[D_{2 n}\right]$. These papers do not provide all the central idempotents. In

Key words: central idempotents, group ring. 2010 AMS Mathematics Classification: 20C05, 16S34
this paper, we have determined the number of central idempotents in the group ring $\mathbb{Z}_{n}\left[S_{3}\right]$, the symmetric group S_{3} over \mathbb{Z}_{n} the ring of integers modulo n, for all positive integers n. Further, we provide an explicit form of these central idempotents.
Let G be a group and R be a ring, then the set of all linear combinations $\alpha=\sum_{g \in G} a_{g} g$ where $a_{g} \in R$ and only finitely many of the $a_{g}{ }^{\prime} s$ are nonzero is defined as group ring $R G$. Sum and product in group ring is given by $\left(\sum_{g \in G} a_{g} g\right)+\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(a_{g}+b_{g}\right) g$ and
$\left(\sum_{g \in G} a_{g} g\right)\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(a_{g} b_{g}\right)$ respectively. Group ring $R G$ is a ring under addition and multiplication defined above. An element e of a ring is said to be an idempotent if $e^{2}=e$. An idempotent e in a ring R is said to be a central idempotent if e commutes with every element of the ring R. For more basic results on group rings we refer to [3].

Definition 1. A set of elements that are connected by an operation called conjugation forms a conjugacy class.
Sum of elements in a conjugacy class is called the class sum of the conjugacy class.

Lemma 1.1 ([1], Theorem 3.6.2, p151). Let G be a group and R be a commutative ring. Then, the set of all class sums forms a basis of the center $\mathcal{Z}(R[G])$ of $R[G]$, over R.

Example 1. Symmetric group of degree 3 having presentation $S_{3}=\langle\sigma, \tau| \tau^{2}=$ $\left.\sigma^{3}=1, \sigma \tau=\tau^{-1} \sigma\right\rangle$, consists of 3 conjugacy classes. These are $\mathcal{C}_{1}=\{1\}$ the idenditity element, $\mathcal{C}_{2}=\left\{\tau, \tau \sigma, \tau \sigma^{2}\right\}$ containg all transpositions, and $\mathcal{C}_{3}=$ $\left\{\sigma, \sigma^{2}\right\}$ containing 3-cycles.
Class sums in S_{3} are $\gamma_{1}=1, \gamma_{2}=\tau+\tau \sigma+\tau \sigma^{2}, \gamma_{3}=\sigma+\sigma^{2}$ respectively. These form a basis of $\mathcal{Z}\left(R\left[S_{3}\right]\right)$, over R. Therefore, any arbitrary element of $\mathcal{Z}\left(R\left[S_{3}\right]\right)$ can be written as a linear combination of $\gamma_{1}, \gamma_{2}, \gamma_{3}$ over R.

In solving the system of equations, number theory plays an important role. The following result gives a unique solution to simultaneous linear congruences with coprime moduli.

Lemma 1.2 (4],Chinese Remainder Theorem). Let $n_{1}, n_{2}, \ldots, n_{l}$ be integers with $\operatorname{gcd}\left(n_{i}, n_{j}\right)=1$ whenever $i \neq j$. Let $n=n_{1} n_{2} \cdots n_{l}$ and $a_{1}, a_{2}, \ldots, a_{l}$ be integers. Then the system of linear congruences

$$
x \equiv a_{i} \quad \bmod n_{i}\left(1 \leq i \leq n_{l}\right)
$$

has a simultaneous unique solution in \mathbb{Z}_{n} given by $\bar{x} \equiv \sum_{i=1}^{l} a_{i} N_{i} y_{i}$, where $N_{k}=\frac{n}{n_{k}}$ and y_{k} is the unique solution of $N_{k} y \equiv 1 \bmod n_{k}$.

In the case of a finitely generated abelian group, the following result guarantees that an abelian group splits as a direct product of finitely many groups of the form $\mathbb{Z}_{p^{k}}$ for p prime,

Lemma 1.3 ([7],Fundamental Theorem of Finite Abelian Group). Every finite abelian group is isomorphic to a direct product of cyclic groups of prime power order.

Let $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{l}^{n_{l}}$ be the prime factorization of n. Since \mathbb{Z}_{n} is a finite abelian group, by lemma 3 ,

$$
\phi: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{p_{1}^{n_{1}}} \oplus \mathbb{Z}_{p_{2}^{n_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{l}^{n_{l}}}
$$

is an isomorphism. Then for an element $a \in \mathbb{Z}_{n}$, is an idempotent in \mathbb{Z}_{n} if and only if each $a \bmod p_{i}^{n_{i}}$ is an idempotent in $\mathbb{Z}_{p_{i}}$. Using above two results we can calculate the number of idempotents in a finite ring.

Lemma 1.4. The number of pairwise non congruent idempotents in \mathbb{Z}_{n} is equal to 2^{l}.

2 Central Idempotents

Theorem 2.1. Let $n=p_{1}^{n_{1}} p_{2}^{n_{2}} \cdots p_{l}^{n_{l}}$ where $p_{i}^{\prime} s$ are distinct primes and $n_{1}, n_{2}, \ldots, n_{l}$ are positive integers.
Then the number of central idempotents in $\mathbb{Z}_{n}\left[S_{3}\right]$ is
(i) $2^{3 l}$, if $p_{i}>3 \forall 1 \leq i \leq l$.
(ii) $2^{3 l-1}$, if $p_{1}=2$ and $p_{i}>3 \forall 2 \leq i \leq l$.
(iii) $2^{3 l-2}$, if $p_{1}=3$ and $p_{i}>3 \forall 2 \leq i \leq l$.
(iv) $2^{3 l-3}$, if $p_{1}=2, p_{2}=3$ and $p_{i}>3 \forall 3 \leq i \leq l$.

Proof. $S_{3}=\left\langle\sigma, \tau \mid \tau^{2}=\sigma^{3}=1, \sigma \tau=\tau^{-1} \sigma\right\rangle$ has three conjugacy classes $\{1\},\left\{\sigma, \sigma^{2}\right\}$ and $\left\{\tau, \tau \sigma, \tau \sigma^{2}\right\}$. By lemma 1, class sums of these conjugacy classes form a basis of center of $\mathbb{Z}_{n}\left[S_{3}\right]$, over \mathbb{Z}_{n}. That is,

$$
\mathcal{Z}\left(\mathbb{Z}_{n}\left[S_{3}\right]\right)=\left\langle 1, \sigma+\sigma^{2}, \tau\left(1+\sigma+\sigma^{2}\right)\right\rangle
$$

Let e be a central idempotent in $\mathbb{Z}_{n}\left[S_{3}\right]$. Then, e can be expressed as

$$
e=a \cdot 1+b\left(\sigma+\sigma^{2}\right)+c\left(\tau\left(1+\sigma+\sigma^{2}\right)\right) \text { for some } a, b, c \in \mathbb{Z}_{n}
$$

which can be written as

$$
e=\alpha \cdot 1+\beta\left(1+\sigma+\sigma^{2}\right)+\gamma\left(1+\sigma+\sigma^{2}+\tau\left(1+\sigma+\sigma^{2}\right)\right)
$$

where $\alpha=a-b, \beta=b-c, \gamma=c \in \mathbb{Z}_{n}$. As e is an idempotent, $e^{2}=e$. Comparing the coefficients of class sums in the equation $e^{2}=e$, we get the following relations:

$$
\begin{align*}
\alpha^{2} & =\alpha \tag{1}\\
3 \beta^{2}+2 \alpha \beta & =\beta \tag{2}\\
6 \gamma^{2}+2 \alpha \gamma+6 \beta \gamma & =\gamma \tag{3}
\end{align*}
$$

The values of α, β and γ give all the possible central idempotents in $\mathbb{Z}_{n}\left[S_{3}\right]$. By lemma 3, we observe that equation (1) has 2^{l} solutions for α. Let α_{1} be an arbitrary solution of (1). Then equation (2) implies

$$
\begin{align*}
3 \beta^{2}+2 \alpha_{1} \beta & =\beta \\
\Longrightarrow \quad \beta\left[3 \beta+\left(2 \alpha_{1}-1\right)\right] & =0 \\
\Longrightarrow \quad 3 \beta^{2} & =-\left(2 \alpha_{1}-1\right) \beta \tag{4}
\end{align*}
$$

Case(i): If $p_{i}>3 \forall 1 \leq i \leq l$
By fundamental theorem of finite abelian groups [7], the mapping

$$
\phi: \mathbb{Z}_{n} \longrightarrow \mathbb{Z}_{p_{1}^{n_{1}}} \oplus \mathbb{Z}_{p_{2}^{n_{2}}} \oplus \cdots \oplus \mathbb{Z}_{p_{l}^{n_{l}}}
$$

defined by $\phi(a)=\left(a_{1}, a_{2}, \ldots, a_{l}\right)$ where each $a_{i} \equiv a \bmod p_{i}^{n_{i}}$, for all $a \in \mathbb{Z}_{n}$, is an isomorphism. For $\beta \in \mathbb{Z}_{n}$,

$$
\phi(\beta)=\left(x_{1}, x_{2}, \ldots, x_{l}\right) \text { where each } x_{i} \equiv \beta \quad \bmod p_{i}^{n_{i}}
$$

From equation (4), we have

$$
\begin{array}{rlrl}
3 \beta^{2} & \equiv-\left(2 \alpha_{1}-1\right) \beta \quad \bmod n & \\
& \Longleftrightarrow \quad 3 x_{i}^{2} & \equiv-\left(2 \alpha_{1}-1\right) x_{i} \quad \bmod p_{i}^{n_{i}} & \forall 1 \leq i \leq l \\
\Longleftrightarrow \quad x_{i}\left[3 x_{i}+\left(2 \alpha_{1}-1\right)\right] & \equiv 0 \quad \bmod p_{i}^{n_{i}} & & \forall 1 \leq i \leq l
\end{array}
$$

We claim that x_{i} and $3 x_{i}+\left(2 \alpha_{1}-1\right)$ cannot be zero divisors in $\mathbb{Z}_{p_{l}}$.
If possible, suppose $x_{i} \neq 0$ and $3 x_{i}+\left(2 \alpha_{1}-1\right) \neq 0$. Then $x_{i}=p_{i}^{\eta} r$ and $3 x_{i}+\left(2 \alpha_{1}-1\right)=p_{i}^{\varsigma} s$, where $p_{i} \nmid r, p_{i} \nmid s$ and $\eta+\varsigma \geq n_{i}$.

$$
3 p_{i}^{\eta} r+\left(2 \alpha_{1}-1\right)=p_{i}^{\varsigma} s
$$

without any loss of generality, let $\eta<\varsigma$, then

$$
p_{i}^{\eta}\left[3 r-p_{i}^{\varsigma-\eta} s\right]=-\left(2 \alpha_{1}-1\right)
$$

This implies that p_{i}^{η} is invertible in $\mathbb{Z}_{p_{i}^{n_{i}}}$. A contradiction. Therefore,

$$
x_{i} \equiv 0 \quad \text { or } \quad 3 x_{i}+\left(2 \alpha_{1}-1\right) \equiv 0 \quad \bmod p_{i}^{n_{i}}
$$

Since 3 is invertible in each $\mathbb{Z}_{p_{i} n_{i}}$, there are 2^{l} possible values for β that satisfy equation (4). Let β_{1} be one of these. Substituting $\alpha=\alpha_{1}$, and $\beta=\beta_{1}$ in equation (3), we get

$$
\begin{align*}
6 \gamma^{2}+2 \alpha_{1} \gamma+6 \beta_{1} \gamma & =\gamma \\
\Longrightarrow \quad \gamma\left[6 \gamma+\left(2 \alpha_{1}+6 \beta_{1}-1\right) \gamma\right] & =0 \tag{5}
\end{align*}
$$

Further, since 6 is invertible in each $\mathbb{Z}_{p_{i}^{n_{i}}}$, by similar calculations we observe that there are 2^{l} possible values for γ satisfying (5). Hence there are $2^{l} \times 2^{l} \times 2^{l}$ solutions for the three simultaneous equations.
Thus, there are $2^{3 l}$ central idempotents in this case.

$$
\text { Case(ii) : If } p_{1}=2, p_{i}>3 \forall 2 \leq i \leq l
$$

Note that 3 is invertible in each $\mathbb{Z}_{p_{i}^{n_{i}}}$. Therefore equation (4) have same solution for β as obtained in case(i). Though 6 is not invertible in $\mathbb{Z}_{p_{1}^{n_{1}}}$ but it is invertible in $\mathbb{Z}_{p_{i}^{n_{i}}} \forall 2 \leq i \leq l$, therefore there are 2^{l-1} possible values for γ which satisfies equation (5). This gives that there are $2^{l} \times 2^{l} \times 2^{l-1}$ solutions for the three simultaneous equations.
Hence, there are $2^{3 l-1}$ central idempotents in this case.

$$
\text { Case(iii) : If } p_{1}=3, p_{i}>3 \forall 2 \leq i \leq l
$$

Observe that 3 is not invertible in $\mathbb{Z}_{p_{1}^{n_{1}}}$ but 3 is invertible in $\mathbb{Z}_{p_{i}^{n_{i}}} \forall 2 \leq i \leq l$. Hence there are 2^{l-1} possible values for β satisfying equation (4). Again, 6 is not invertible in $\mathbb{Z}_{p_{1}^{n_{1}}}$ but 6 is invertible in $\mathbb{Z}_{p_{i}^{n_{i}}} \forall 2 \leq i \leq l$, we find that there are 2^{l-1} possible values for γ satisfying equation (5). Thus there are $2^{l} \times 2^{l-1} \times 2^{l-1}=2^{3 l-2}$ solutions for the three simultaneous equations. And therefore there are $2^{3 l-2}$ central idempotents in this case.

Case(iv): If $p_{1}=3, p_{2}=2, p_{i}>3 \forall 3 \leq i \leq l$.
Again 3 is not invertible in $\mathbb{Z}_{p_{1}^{n_{1}}}$ but being invertible in $\mathbb{Z}_{p_{i}^{n_{i}}} \forall 2 \leq i \leq l$, we get 2^{l-1} possible values for β satisfying equation (4). Next, 6 is not invertible in $\mathbb{Z}_{p_{1}^{n_{1}}}$ and $\mathbb{Z}_{p_{2}^{n_{2}}}$ but 6 is invertible in $\mathbb{Z}_{p_{i}^{n_{i}}} \forall 3 \leq i \leq l$, there are 2^{l-2} possible values for γ which satisfy equation (5). This gives $2^{l} \times 2^{l-1} \times 2^{l-2}$ solutions for the three simultaneous equations.
Hence, there are $2^{3 l-3}$ central idempotents in this case.
Corollary 1. Central idempotents in $\mathbb{Z}_{n}\left[S_{3}\right]$ are of the form

$$
\alpha+\beta\left(1+\sigma+\sigma^{2}\right)+\gamma\left(1+\sigma+\sigma^{2}+\tau\left(1+\sigma+\sigma^{2}\right)\right)
$$

where

1. α is an idempotent in \mathbb{Z}_{n}, and each one is precisely of the form $\sum_{k=1}^{l} h_{k} \epsilon_{k}+$ $m \mathbb{Z}$, where $\epsilon_{k} \in\{0,1\}$ and $h_{k} \in\left(\prod_{i=1, i \neq k}^{l} p_{i}^{n_{i}}\right) \mathbb{Z}$ such that $h_{k}-1 \in$ $p_{k}^{n_{k}} \mathcal{Z}$.
2. β is the simultaneous solution of the system of linear congruences

$$
\beta \equiv a_{i} \quad \bmod p_{i}^{n_{i}} \quad(1 \leq i \leq l)
$$

where (for each α),

- $a_{i} \in\left\{0,-(2 \alpha-1)\left(3^{-1} \bmod p_{i}^{n_{i}}\right) \bmod n\right\} \quad \forall 1 \leq i \leq l$ in cases (i) and (ii), and
- $a_{1}=0, a_{i} \in\left\{0,-(2 \alpha-1)\left(3^{-1} \bmod p_{i}^{n_{i}}\right) \bmod n\right\} \forall 2 \leq i \leq l$ in cases (iii) and (iv).

Using Chinese Remainder theorem [4], the solution of the above system of linear congruences is given by $\bar{\beta} \equiv \sum_{i=1}^{l} a_{i} P_{i} x_{i}$ where

- $P_{k}=\frac{n}{p_{k}^{n_{k}}}$
- x_{k} is the unique solution of $P_{k} x \equiv 1 \bmod p_{k}^{n_{k}}$

3. γ is the solution of the system of linear congruences

$$
\gamma \equiv b_{i} \quad \bmod p_{i}^{n_{i}} \quad(1 \leq i \leq l)
$$

where (for each α and β),

- $b_{i} \in\left\{0,-(2 \alpha+6 \beta-1)\left(6^{-1} \bmod p_{i}^{n_{i}}\right) \bmod n\right\} \forall 1 \leq i \leq l$ in case (i), and
- $b_{1}=0, b_{i} \in\left\{0,-(2 \alpha+6 \beta-1)\left(6^{-1} \bmod p_{i}^{n_{i}}\right) \bmod n\right\} \forall 2 \leq i \leq l$ in cases (ii) and (iii), and
- $b_{1}=0, b_{2}=0, b_{i} \in\left\{0,-(2 \alpha+6 \beta-1)\left(6^{-1} \bmod p_{i}^{n_{i}}\right) \bmod n\right\} \forall 3 \leq$ $i \leq l$ in case (iv).

References

[1] C. Polcino Milies and S. K. Sehgal, An introduction to group rings, Algebra and Applications, 1, Kluwer Academic Publishers, Dordrecht, 2002. MR1896125
[2] F. E. Brochero Martínez, Structure of finite dihedral group algebra, Finite Fields Appl. 35 (2015), 204-214. MR3368809
[3] D. S. Passman, The algebraic structure of group rings, Pure and Applied Mathematics, Wiley-Interscience, New York, 1977. MR0470211
[4] D. M. Burton, Elementary number theory, Allyn and Bacon, Inc., Boston, MA, 1976. MR0567138
[5] H. Meyer, Primitive central idempotents of finite group rings of symmetric groups, Math. Comp. 77 (2008), no. 263, 1801-1821. MR2398795
[6] M. Osima, On blocks of characters of the symmetric group, Proc. Japan Acad. 31 (1955), 131-134. MR0076771
[7] J. A. Gallian, Contemporary Abstract Algebra, Narosa, 1999.

