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Abstract

The number of central idempotents in group ring Zn[S3] have been
determined. Furthermore, some explicit form of central idempotents have
also been obtained.

1 Introduction

The problem of computing central idempotents of rings and group rings is an
important problem. It has drawn attention of many researchers. A central
idempotent that cannot be written as the sum of two non zero orthogonal cen-
tral idempotents is called a centrally primitive idempotent. Meyer [5] computed
primitive central idempotents of Fq[G] for arbitrary prime powers q, and arbi-
trary finite groups G. Aso, a well-known result of Osima [6, p.178] gives the
explicit form for the primitive central idempotents in K[G], when K is a field.
Mart́ınez [2] computed central irreducible idempotents of the dihedral group
algebra Fq[D2n]. These papers do not provide all the central idempotents. In
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this paper, we have determined the number of central idempotents in the group
ring Zn[S3], the symmetric group S3 over Zn the ring of integers modulo n, for
all positive integers n. Further, we provide an explicit form of these central
idempotents.
Let G be a group and R be a ring, then the set of all linear combinations
α =

∑
g∈G agg where ag ∈ R and only finitely many of the ag

′s are non-
zero is defined as group ring RG. Sum and product in group ring is given by(∑

g∈G agg
)

+
(∑

g∈G bgg
)

=
∑
g∈G (ag + bg) g and(∑

g∈G agg
)(∑

g∈G bgg
)

=
∑
g∈G (agbg) respectively. Group ring RG is a

ring under addition and multiplication defined above. An element e of a ring
is said to be an idempotent if e2 = e. An idempotent e in a ring R is said to
be a central idempotent if e commutes with every element of the ring R. For
more basic results on group rings we refer to [3].

Definition 1. A set of elements that are connected by an operation called
conjugation forms a conjugacy class.
Sum of elements in a conjugacy class is called the class sum of the conjugacy
class.

Lemma 1.1 ([1], Theorem 3.6.2, p151). Let G be a group and R be a commu-
tative ring. Then, the set of all class sums forms a basis of the center Z(R[G])
of R[G], over R.

Example 1. Symmetric group of degree 3 having presentation S3 = 〈σ, τ |τ2 =
σ3 = 1, στ = τ−1σ〉, consists of 3 conjugacy classes. These are C1 = {1}
the idenditity element, C2 = {τ, τσ, τσ2} containg all transpositions, and C3 =
{σ, σ2} containing 3-cycles.
Class sums in S3 are γ1 = 1, γ2 = τ + τσ + τσ2, γ3 = σ + σ2 respectively.
These form a basis of Z(R[S3]), over R. Therefore, any arbitrary element of
Z(R[S3]) can be written as a linear combination of γ1, γ2, γ3 over R.

In solving the system of equations, number theory plays an important role.
The following result gives a unique solution to simultaneous linear congruences
with coprime moduli.

Lemma 1.2 ([4],Chinese Remainder Theorem). Let n1, n2, . . . , nl be integers
with gcd(ni, nj) = 1 whenever i 6= j. Let n = n1n2 · · ·nl and a1, a2, . . . , al be
integers. Then the system of linear congruences

x ≡ ai mod ni (1 ≤ i ≤ nl)

has a simultaneous unique solution in Zn given by x̄ ≡
∑l
i=1 aiNiyi, where

Nk = n
nk

and yk is the unique solution of Nky ≡ 1 mod nk.
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In the case of a finitely generated abelian group, the following result guar-
antees that an abelian group splits as a direct product of finitely many groups
of the form Zpk for p prime,

Lemma 1.3 ([7],Fundamental Theorem of Finite Abelian Group). Every finite
abelian group is isomorphic to a direct product of cyclic groups of prime power
order.

Let n = pn1
1 pn2

2 · · · p
nl

l be the prime factorization of n. Since Zn is a finite
abelian group, by lemma 3,

φ : Zn −→ Zpn1
1
⊕ Zpn2

2
⊕ · · · ⊕ Zpnl

l

is an isomorphism. Then for an element a ∈ Zn, is an idempotent in Zn if and
only if each a mod pni

i is an idempotent in Zpni
i

. Using above two results we
can calculate the number of idempotents in a finite ring.

Lemma 1.4. The number of pairwise non congruent idempotents in Zn is equal
to 2l.

2 Central Idempotents

Theorem 2.1. Let n = pn1
1 pn2

2 · · · p
nl

l where p′is are distinct primes and n1, n2, . . . , nl
are positive integers.
Then the number of central idempotents in Zn[S3] is

(i) 23l , if pi > 3 ∀ 1 ≤ i ≤ l.

(ii) 23l−1 , if p1 = 2 and pi > 3 ∀ 2 ≤ i ≤ l.

(iii) 23l−2 , if p1 = 3 and pi > 3 ∀ 2 ≤ i ≤ l.

(iv) 23l−3 , if p1 = 2, p2 = 3 and pi > 3 ∀ 3 ≤ i ≤ l.

Proof. S3 = 〈σ, τ |τ2 = σ3 = 1, στ = τ−1σ〉 has three conjugacy classes
{1}, {σ, σ2} and {τ, τσ, τσ2}. By lemma 1, class sums of these conjugacy classes
form a basis of center of Zn[S3], over Zn. That is,

Z(Zn[S3]) =
〈
1, σ + σ2, τ(1 + σ + σ2)

〉
Let e be a central idempotent in Zn[S3]. Then, e can be expressed as

e = a · 1 + b(σ + σ2) + c(τ(1 + σ + σ2)) for some a, b, c ∈ Zn

which can be written as

e = α · 1 + β(1 + σ + σ2) + γ(1 + σ + σ2 + τ(1 + σ + σ2)),
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where α = a − b, β = b − c, γ = c ∈ Zn. As e is an idempotent, e2 = e.
Comparing the coefficients of class sums in the equation e2 = e, we get the
following relations:

α2 = α (1)

3β2 + 2αβ = β (2)

6γ2 + 2αγ + 6βγ = γ (3)

The values of α, β and γ give all the possible central idempotents in Zn[S3].
By lemma 3, we observe that equation (1) has 2l solutions for α. Let α1 be an
arbitrary solution of (1). Then equation (2) implies

3β2 + 2α1β = β

=⇒ β[3β + (2α1 − 1)] = 0

=⇒ 3β2 = −(2α1 − 1)β (4)

Case(i) : If pi > 3 ∀ 1 ≤ i ≤ l
By fundamental theorem of finite abelian groups [7], the mapping

φ : Zn −→ Zpn1
1
⊕ Zpn2

2
⊕ · · · ⊕ Zpnl

l

defined by φ(a) = (a1, a2, . . . , al) where each ai ≡ a mod pni
i ,

for all a ∈ Zn, is an isomorphism. For β ∈ Zn ,

φ(β) = (x1, x2, . . . , xl) where each xi ≡ β mod pni
i .

From equation (4), we have

3β2 ≡ −(2α1 − 1)β mod n

⇐⇒ 3x2i ≡ −(2α1 − 1)xi mod pni
i ∀1 ≤ i ≤ l

⇐⇒ xi[3xi + (2α1 − 1)] ≡ 0 mod pni
i ∀1 ≤ i ≤ l.

We claim that xi and 3xi + (2α1 − 1) cannot be zero divisors in Zpnl
l

.

If possible, suppose xi 6= 0 and 3xi + (2α1 − 1) 6= 0. Then xi = pηi r and
3xi + (2α1 − 1) = pςis , where pi - r , pi - s and η + ς ≥ ni.

3pηi r + (2α1 − 1) = pςis

without any loss of generality, let η < ς, then

pηi [3r − pς−ηi s] = −(2α1 − 1).

This implies that pηi is invertible in Zpni
i

. A contradiction. Therefore,

xi ≡ 0 or 3xi + (2α1 − 1) ≡ 0 mod pni
i
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Since 3 is invertible in each Zpni
i

, there are 2l possible values for β that satisfy

equation (4). Let β1 be one of these. Substituting α = α1, and β = β1 in
equation (3), we get

6γ2 + 2α1γ + 6β1γ = γ

=⇒ γ[6γ + (2α1 + 6β1 − 1)γ] = 0 (5)

Further, since 6 is invertible in each Zpni
i

, by similar calculations we observe

that there are 2l possible values for γ satisfying (5). Hence there are 2l×2l×2l

solutions for the three simultaneous equations.
Thus, there are 23l central idempotents in this case.

Case(ii) : If p1 = 2, pi > 3 ∀ 2 ≤ i ≤ l.
Note that 3 is invertible in each Zpni

i
. Therefore equation (4) have same so-

lution for β as obtained in case(i). Though 6 is not invertible in Zpn1
1

but it

is invertible in Zpni
i
∀2 ≤ i ≤ l , therefore there are 2l−1 possible values for γ

which satisfies equation (5). This gives that there are 2l × 2l × 2l−1 solutions
for the three simultaneous equations.
Hence, there are 23l−1 central idempotents in this case.

Case(iii) : If p1 = 3, pi > 3 ∀ 2 ≤ i ≤ l.
Observe that 3 is not invertible in Zpn1

1
but 3 is invertible in Zpni

i
∀2 ≤ i ≤ l.

Hence there are 2l−1 possible values for β satisfying equation (4). Again, 6
is not invertible in Zpn1

1
but 6 is invertible in Zpni

i
∀2 ≤ i ≤ l , we find that

there are 2l−1 possible values for γ satisfying equation (5). Thus there are
2l × 2l−1 × 2l−1 = 23l−2 solutions for the three simultaneous equations.
And therefore there are 23l−2 central idempotents in this case.

Case(iv) : If p1 = 3, p2 = 2, pi > 3 ∀ 3 ≤ i ≤ l.
Again 3 is not invertible in Zpn1

1
but being invertible in Zpni

i
∀2 ≤ i ≤ l , we

get 2l−1 possible values for β satisfying equation (4). Next, 6 is not invertible
in Zpn1

1
and Zpn2

2
but 6 is invertible in Zpni

i
∀3 ≤ i ≤ l , there are 2l−2 possible

values for γ which satisfy equation (5). This gives 2l×2l−1×2l−2 solutions for
the three simultaneous equations.
Hence, there are 23l−3 central idempotents in this case. 2

Corollary 1. Central idempotents in Zn[S3] are of the form

α+ β(1 + σ + σ2) + γ(1 + σ + σ2 + τ(1 + σ + σ2)),

where
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1. α is an idempotent in Zn, and each one is precisely of the form
∑l
k=1 hkεk+

mZ , where εk ∈ {0, 1} and hk ∈
(∏l

i=1,i6=k p
ni
i

)
Z such that hk − 1 ∈

pnk

k Z.

2. β is the simultaneous solution of the system of linear congruences

β ≡ ai mod pni
i (1 ≤ i ≤ l),

where (for each α),

• ai ∈ {0,−(2α− 1)(3−1 mod pni
i ) mod n} ∀ 1 ≤ i ≤ l in cases (i)

and (ii), and

• a1 = 0, ai ∈ {0,−(2α − 1)(3−1 mod pni
i ) mod n} ∀ 2 ≤ i ≤ l in

cases (iii) and (iv).

Using Chinese Remainder theorem [4], the solution of the above system

of linear congruences is given by β̄ ≡
∑l
i=1 aiPixi where

• Pk = n
p
nk
k

• xk is the unique solution of Pkx ≡ 1 mod pnk

k

3. γ is the solution of the system of linear congruences

γ ≡ bi mod pni
i (1 ≤ i ≤ l),

where (for each α and β),

• bi ∈ {0,−(2α+ 6β − 1)(6−1 mod pni
i ) mod n} ∀ 1 ≤ i ≤ l in case

(i), and

• b1 = 0, bi ∈ {0,−(2α + 6β − 1)(6−1 mod pni
i ) mod n} ∀ 2 ≤ i ≤ l

in cases (ii) and (iii), and

• b1 = 0, b2 = 0, bi ∈ {0,−(2α+6β−1)(6−1 mod pni
i ) mod n} ∀ 3 ≤

i ≤ l in case (iv).
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