East-West J. of Mathematics: Vol. 23, No 2 (2022) pp. 112-118 https://doi.org/10.36853/ewjm0389

A NOTE ON CENTRAL IDEMPOTENTS IN GROUP RING OF SYMMETRIC GROUP OVER \mathbb{Z}_n

Anuradha Sabharwal, Pooja Yadav and R. K. Sharma

Department of Mathematics, University of Delhi, Delhi–110 007 India e-mail: anuradha.sabharwal@gmail.com

Department of Mathematics, Kamala Nehru College, University of Delhi, Delhi–110 007 India e-mail: iitd.pooja@gmail.com

Department of Mathematics, Indian Institute of Technology Delhi, Delhi–110 016 India e-mail: rksharmaiitd@gmail.com

Abstract

The number of central idempotents in group ring $\mathbb{Z}_n[S_3]$ have been determined. Furthermore, some explicit form of central idempotents have also been obtained.

1 Introduction

The problem of computing central idempotents of rings and group rings is an important problem. It has drawn attention of many researchers. A central idempotent that cannot be written as the sum of two non zero orthogonal central idempotents is called a centrally primitive idempotent. Meyer [5] computed primitive central idempotents of $F_q[G]$ for arbitrary prime powers q, and arbitrary finite groups G. Aso, a well-known result of Osima [6, p.178] gives the explicit form for the primitive central idempotents in K[G], when K is a field. Martínez [2] computed central irreducible idempotents of the dihedral group algebra $\mathbb{F}_q[D_{2n}]$. These papers do not provide all the central idempotents. In

Key words: central idempotents, group ring. 2010 AMS Mathematics Classification: 20C05, 16S34 this paper, we have determined the number of central idempotents in the group ring $\mathbb{Z}_n[S_3]$, the symmetric group S_3 over \mathbb{Z}_n the ring of integers modulo n, for all positive integers n. Further, we provide an explicit form of these central idempotents.

Let G be a group and R be a ring, then the set of all linear combinations $\alpha = \sum_{g \in G} a_g g$ where $a_g \in R$ and only finitely many of the $a_g's$ are non-zero is defined as group ring RG. Sum and product in group ring is given by

$$\left(\sum_{g \in G} a_g g\right) + \left(\sum_{g \in G} b_g g\right) = \sum_{g \in G} \left(a_g + b_g\right) g \text{ and}$$

 $\left(\sum_{g\in G} a_g g\right) \left(\sum_{g\in G} b_g g\right) = \sum_{g\in G} (a_g b_g)$ respectively. Group ring RG is a ring under addition and multiplication defined above. An element e of a ring is said to be an idempotent if $e^2 = e$. An idempotent e in a ring R is said to be a central idempotent if e commutes with every element of the ring R. For more basic results on group rings we refer to [3].

Definition 1. A set of elements that are connected by an operation called conjugation forms a **conjugacy class**.

Sum of elements in a conjugacy class is called the **class sum** of the conjugacy class.

Lemma 1.1 ([1], Theorem 3.6.2, p151). Let G be a group and R be a commutative ring. Then, the set of all class sums forms a basis of the center $\mathcal{Z}(R[G])$ of R[G], over R.

Example 1. Symmetric group of degree 3 having presentation $S_3 = \langle \sigma, \tau | \tau^2 = \sigma^3 = 1, \ \sigma\tau = \tau^{-1}\sigma \rangle$, consists of 3 conjugacy classes. These are $C_1 = \{1\}$ the idenditity element, $C_2 = \{\tau, \tau\sigma, \tau\sigma^2\}$ containing all transpositions, and $C_3 = \{\sigma, \sigma^2\}$ containing 3-cycles.

Class sums in S_3 are $\gamma_1 = 1, \gamma_2 = \tau + \tau \sigma + \tau \sigma^2, \gamma_3 = \sigma + \sigma^2$ respectively. These form a basis of $\mathcal{Z}(R[S_3])$, over R. Therefore, any arbitrary element of $\mathcal{Z}(R[S_3])$ can be written as a linear combination of $\gamma_1, \gamma_2, \gamma_3$ over R.

In solving the system of equations, number theory plays an important role. The following result gives a unique solution to simultaneous linear congruences with coprime moduli.

Lemma 1.2 ([4], Chinese Remainder Theorem). Let n_1, n_2, \ldots, n_l be integers with $gcd(n_i, n_j) = 1$ whenever $i \neq j$. Let $n = n_1 n_2 \cdots n_l$ and a_1, a_2, \ldots, a_l be integers. Then the system of linear congruences

$$x \equiv a_i \mod n_i \ (1 \le i \le n_l)$$

has a simultaneous unique solution in \mathbb{Z}_n given by $\bar{x} \equiv \sum_{i=1}^l a_i N_i y_i$, where $N_k = \frac{n}{n_k}$ and y_k is the unique solution of $N_k y \equiv 1 \mod n_k$.

In the case of a finitely generated abelian group, the following result guarantees that an abelian group splits as a direct product of finitely many groups of the form \mathbb{Z}_{p^k} for p prime,

Lemma 1.3 ([7], Fundamental Theorem of Finite Abelian Group). Every finite abelian group is isomorphic to a direct product of cyclic groups of prime power order.

Let $n = p_1^{n_1} p_2^{n_2} \cdots p_l^{n_l}$ be the prime factorization of n. Since \mathbb{Z}_n is a finite abelian group, by lemma 3,

$$\phi:\mathbb{Z}_n\longrightarrow\mathbb{Z}_{p_1^{n_1}}\oplus\mathbb{Z}_{p_2^{n_2}}\oplus\cdots\oplus\mathbb{Z}_{p_l^n}$$

is an isomorphism. Then for an element $a \in \mathbb{Z}_n$, is an idempotent in \mathbb{Z}_n if and only if each $a \mod p_i^{n_i}$ is an idempotent in $\mathbb{Z}_{p_i^{n_i}}$. Using above two results we can calculate the number of idempotents in a finite ring.

Lemma 1.4. The number of pairwise non congruent idempotents in \mathbb{Z}_n is equal to 2^l .

2 Central Idempotents

Theorem 2.1. Let $n = p_1^{n_1} p_2^{n_2} \cdots p_l^{n_l}$ where $p'_i s$ are distinct primes and n_1, n_2, \ldots, n_l are positive integers. Then the number of central idempotents in $\mathbb{Z}_n[S_3]$ is

- (i) 2^{3l} , if $p_i > 3 \forall 1 \le i \le l$.
- (ii) 2^{3l-1} , if $p_1 = 2$ and $p_i > 3 \forall 2 \le i \le l$.
- (iii) 2^{3l-2} , if $p_1 = 3$ and $p_i > 3 \forall 2 \le i \le l$.
- (iv) 2^{3l-3} , if $p_1 = 2, p_2 = 3$ and $p_i > 3 \forall 3 \le i \le l$.

Proof. $S_3 = \langle \sigma, \tau | \tau^2 = \sigma^3 = 1, \sigma\tau = \tau^{-1}\sigma \rangle$ has three conjugacy classes $\{1\}, \{\sigma, \sigma^2\}$ and $\{\tau, \tau\sigma, \tau\sigma^2\}$. By lemma 1, class sums of these conjugacy classes form a basis of center of $\mathbb{Z}_n[S_3]$, over \mathbb{Z}_n . That is,

$$\mathcal{Z}(\mathbb{Z}_n[S_3]) = \left\langle 1, \sigma + \sigma^2, \tau(1 + \sigma + \sigma^2) \right\rangle$$

Let e be a central idempotent in $\mathbb{Z}_n[S_3]$. Then, e can be expressed as

$$e = a \cdot 1 + b(\sigma + \sigma^2) + c(\tau(1 + \sigma + \sigma^2))$$
 for some $a, b, c \in \mathbb{Z}_n$

which can be written as

$$e = \alpha \cdot 1 + \beta (1 + \sigma + \sigma^2) + \gamma (1 + \sigma + \sigma^2 + \tau (1 + \sigma + \sigma^2)),$$

where $\alpha = a - b, \beta = b - c, \gamma = c \in \mathbb{Z}_n$. As *e* is an idempotent, $e^2 = e$. Comparing the coefficients of class sums in the equation $e^2 = e$, we get the following relations:

$$\alpha^2 = \alpha \tag{1}$$

$$3\beta^2 + 2\alpha\beta = \beta \tag{2}$$

$$6\gamma^2 + 2\alpha\gamma + 6\beta\gamma = \gamma \tag{3}$$

The values of α, β and γ give all the possible central idempotents in $\mathbb{Z}_n[S_3]$. By lemma 3, we observe that equation (1) has 2^l solutions for α . Let α_1 be an arbitrary solution of (1). Then equation (2) implies

$$3\beta^2 + 2\alpha_1\beta = \beta$$

$$\implies \qquad \beta[3\beta + (2\alpha_1 - 1)] = 0$$

$$\implies \qquad \qquad 3\beta^2 = -(2\alpha_1 - 1)\beta \qquad (4)$$

Case(i) : If $p_i > 3 \forall 1 \le i \le l$

By fundamental theorem of finite abelian groups [7], the mapping

$$\phi: \mathbb{Z}_n \longrightarrow \mathbb{Z}_{p_1^{n_1}} \oplus \mathbb{Z}_{p_2^{n_2}} \oplus \cdots \oplus \mathbb{Z}_{p_l^{n_l}}$$

defined by $\phi(a) = (a_1, a_2, \dots, a_l)$ where each $a_i \equiv a \mod p_i^{n_i}$, for all $a \in \mathbb{Z}_n$, is an isomorphism. For $\beta \in \mathbb{Z}_n$,

$$\phi(\beta) = (x_1, x_2, \dots, x_l)$$
 where each $x_i \equiv \beta \mod p_i^{n_i}$.

From equation (4), we have

$$\begin{aligned} 3\beta^2 &\equiv -(2\alpha_1 - 1)\beta \mod n \\ \iff & 3x_i^2 \equiv -(2\alpha_1 - 1)x_i \mod p_i^{n_i} \qquad \forall 1 \le i \le l \\ \iff & x_i[3x_i + (2\alpha_1 - 1)] \equiv 0 \mod p_i^{n_i} \qquad \forall 1 \le i \le l. \end{aligned}$$

We claim that x_i and $3x_i + (2\alpha_1 - 1)$ cannot be zero divisors in $\mathbb{Z}_{p_l^{n_l}}$. If possible, suppose $x_i \neq 0$ and $3x_i + (2\alpha_1 - 1) \neq 0$. Then $x_i = p_i^{\eta}r$ and $3x_i + (2\alpha_1 - 1) = p_i^{\varsigma}s$, where $p_i \nmid r$, $p_i \nmid s$ and $\eta + \varsigma \geq n_i$.

$$3p_i^{\eta}r + (2\alpha_1 - 1) = p_i^{\varsigma}s$$

without any loss of generality, let $\eta < \varsigma$, then

$$p_i^{\eta}[3r - p_i^{\varsigma - \eta}s] = -(2\alpha_1 - 1).$$

This implies that p_i^{η} is invertible in $\mathbb{Z}_{p_i^{n_i}}$. A contradiction. Therefore,

$$x_i \equiv 0 \quad \text{or} \quad 3x_i + (2\alpha_1 - 1) \equiv 0 \mod p_i^{n_i}$$

Since 3 is invertible in each $\mathbb{Z}_{p_i^{n_i}}$, there are 2^l possible values for β that satisfy equation (4). Let β_1 be one of these. Substituting $\alpha = \alpha_1$, and $\beta = \beta_1$ in equation (3), we get

$$6\gamma^{2} + 2\alpha_{1}\gamma + 6\beta_{1}\gamma = \gamma$$

$$\implies \gamma[6\gamma + (2\alpha_{1} + 6\beta_{1} - 1)\gamma] = 0$$
(5)

Further, since 6 is invertible in each $\mathbb{Z}_{p_i^{n_i}}$, by similar calculations we observe that there are 2^l possible values for γ satisfying (5). Hence there are $2^l \times 2^l \times 2^l$ solutions for the three simultaneous equations.

Thus, there are 2^{3l} central idempotents in this case.

Case(ii) : If $p_1 = 2, p_i > 3 \ \forall \ 2 \le i \le l$.

Note that 3 is invertible in each $\mathbb{Z}_{p_i^{n_i}}$. Therefore equation (4) have same solution for β as obtained in case(i). Though 6 is not invertible in $\mathbb{Z}_{p_1^{n_1}}$ but it is invertible in $\mathbb{Z}_{p_i^{n_i}} \forall 2 \leq i \leq l$, therefore there are 2^{l-1} possible values for γ which satisfies equation (5). This gives that there are $2^l \times 2^l \times 2^{l-1}$ solutions for the three simultaneous equations.

Hence, there are 2^{3l-1} central idempotents in this case.

Case(iii) : If $p_1 = 3$, $p_i > 3 \forall 2 \le i \le l$.

Observe that 3 is not invertible in $\mathbb{Z}_{p_1^{n_1}}$ but 3 is invertible in $\mathbb{Z}_{p_i^{n_i}} \forall 2 \leq i \leq l$. Hence there are 2^{l-1} possible values for β satisfying equation (4). Again, 6 is not invertible in $\mathbb{Z}_{p_1^{n_1}}$ but 6 is invertible in $\mathbb{Z}_{p_i^{n_i}} \forall 2 \leq i \leq l$, we find that there are 2^{l-1} possible values for γ satisfying equation (5). Thus there are $2^l \times 2^{l-1} \times 2^{l-1} = 2^{3l-2}$ solutions for the three simultaneous equations. And therefore there are 2^{3l-2} central idempotents in this case.

Case(iv) : If $p_1 = 3$, $p_2 = 2$, $p_i > 3 \forall 3 \le i \le l$.

Again 3 is not invertible in $\mathbb{Z}_{p_1^{n_1}}$ but being invertible in $\mathbb{Z}_{p_i^{n_i}} \ \forall 2 \leq i \leq l$, we get 2^{l-1} possible values for β satisfying equation (4). Next, 6 is not invertible in $\mathbb{Z}_{p_1^{n_1}}$ and $\mathbb{Z}_{p_2^{n_2}}$ but 6 is invertible in $\mathbb{Z}_{p_i^{n_i}} \ \forall 3 \leq i \leq l$, there are 2^{l-2} possible values for γ which satisfy equation (5). This gives $2^l \times 2^{l-1} \times 2^{l-2}$ solutions for the three simultaneous equations.

Hence, there are 2^{3l-3} central idempotents in this case.

Corollary 1. Central idempotents in $\mathbb{Z}_n[S_3]$ are of the form

$$\alpha + \beta(1 + \sigma + \sigma^2) + \gamma(1 + \sigma + \sigma^2 + \tau(1 + \sigma + \sigma^2)),$$

where

- 1. α is an idempotent in \mathbb{Z}_n , and each one is precisely of the form $\sum_{k=1}^l h_k \epsilon_k + m\mathbb{Z}$, where $\epsilon_k \in \{0,1\}$ and $h_k \in \left(\prod_{i=1,i\neq k}^l p_i^{n_i}\right)\mathbb{Z}$ such that $h_k 1 \in p_k^{n_k} \mathbb{Z}$.
- 2. β is the simultaneous solution of the system of linear congruences

$$\beta \equiv a_i \mod p_i^{n_i} \quad (1 \le i \le l),$$

where (for each α),

- $a_i \in \{0, -(2\alpha 1)(3^{-1} \mod p_i^{n_i}) \mod n\} \quad \forall \ 1 \le i \le l \ in \ cases \ (i) and \ (ii), and$
- $a_1 = 0, a_i \in \{0, -(2\alpha 1)(3^{-1} \mod p_i^{n_i}) \mod n\} \forall 2 \le i \le l \text{ in cases (iii) and (iv).}$

Using Chinese Remainder theorem [4], the solution of the above system of linear congruences is given by $\bar{\beta} \equiv \sum_{i=1}^{l} a_i P_i x_i$ where

- $P_k = \frac{n}{p_k^{n_k}}$
- x_k is the unique solution of $P_k x \equiv 1 \mod p_k^{n_k}$

3. γ is the solution of the system of linear congruences

$$\gamma \equiv b_i \mod p_i^{n_i} \quad (1 \le i \le l),$$

where (for each α and β),

- $b_i \in \{0, -(2\alpha + 6\beta 1)(6^{-1} \mod p_i^{n_i}) \mod n\} \forall 1 \le i \le l \text{ in case}$ (i), and
- $b_1 = 0, b_i \in \{0, -(2\alpha + 6\beta 1)(6^{-1} \mod p_i^{n_i}) \mod n\} \forall 2 \le i \le l$ in cases (ii) and (iii), and
- $b_1 = 0, b_2 = 0, b_i \in \{0, -(2\alpha + 6\beta 1)(6^{-1} \mod p_i^{n_i}) \mod n\} \forall 3 \le i \le l \text{ in case (iv).}$

References

- C. Polcino Milies and S. K. Sehgal, An introduction to group rings, Algebra and Applications, 1, Kluwer Academic Publishers, Dordrecht, 2002. MR1896125
- [2] F. E. Brochero Martínez, Structure of finite dihedral group algebra, Finite Fields Appl. 35 (2015), 204–214. MR3368809
- [3] D. S. Passman, *The algebraic structure of group rings*, Pure and Applied Mathematics, Wiley-Interscience, New York, 1977. MR0470211

- [4] D. M. Burton, *Elementary number theory*, Allyn and Bacon, Inc., Boston, MA, 1976. MR0567138
- [5] H. Meyer, Primitive central idempotents of finite group rings of symmetric groups, Math. Comp. 77 (2008), no. 263, 1801–1821. MR2398795
- [6] M. Osima, On blocks of characters of the symmetric group, Proc. Japan Acad. 31 (1955), 131–134. MR0076771
- [7] J. A. Gallian, Contemporary Abstract Algebra, Narosa, 1999.